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Exact atomic wavefunctions: a generalised power series 
expansion using hyperspherical coordinates 

H mar?  
Fakultat fur Physik der Universitat Freiburg, Hermann-Herder-Strasse 3, D-7800 Freiburg, 
West Germany 

Received 6 September 1984 

Abstract. The Schrodinger equation for an atom having N electrons ( N  = 1 , 2 , 3 ,  . . .) has 
been solved exactly within the framework of generalised power series. The members of 
this series can easily be calculated from a two-term recursion. The present formulation is 
suitable both for computational as  well as for analytical work. 

1. Introduction 

Exact atomic wavefunctions were first considered by Fock (1958) in the case of helium 
in the 'S symmetry. Fock introduced hyperspherical coordinates to describe the position 
vectors of the two electrons ri ( i  = 1,2) putting 

r = ( r : +  

tan a = r , /  r2 

cos 6 = i, * ;2 

and showed that exact eigenfunctions possess in the neighbourhood of the point r = 0 
an expansion of the structure 

Substituting this ansatz into the wave equation for helium he derived a coupled system 
of equations for the angular functions $,,,,,(a, 6). The actual calculation of the angular 
functions however turns out to be extremely difficult. We remark also that the Fock 
expansion, equation (2), represents one particular solution that is finite at the origin 
( r  = 0). Fock did not derive expansions for other linearly independent solutions in o- 
order to construct a fundamental system of solutions. Application of physical boundary 
conditions needs such a complete system of solutions. 

Fock expansions in terms of hyperspherical partial waves have been investigated 
by Knirk (1974a, b) for many-electron atoms of any symmetry. Knirk derived a coupled 
system of hyperradial equations, and following Nyswander ( 1929) he obtained an 
expansion of radial functions into power of r and into powers of In r. The calculation 
of the expansion coefficients requires either multiple derivatives with respect to some 
parameter (Knirk 1974a) or the treatment of two-dimensional algebraic recurrence 
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relations (Knirk 1974b). Both methods are very difficult to handle, and  inconvenient 
for numerical computation. 

Knirk’s approach was recently reconsidered by Haftel and Mandelzweig (1983) for 
three-body Coulomb systems. These authors solve the system of hyperradial equations 
following a method described by Gantmacher ( 1959). Gantmacher derives generalised 
power series solutions for first-order systems of ordinary differential equations with 
one weak singularity. This power series contains matrix powers of the independent 
variable ( r  in our case). Logarithmic terms are thus generated by upper or lower 
triangular matrices as a n  exponent of r. Haftel and Mandelzweig (1983) apply Gant- 
macher’s method to second-order systems. Their system of recurrence relations for a 
truncated set of differential equations has a triangular structure, i.e. the nth order 
matrix coefficient as the solution of the recurrence formula requires knowledge of all 
matrices of lower order. Nevertheless, this procedure does not require matrix inver- 
sions, and is suitable for numerical computation. The procedure also allows the 
construction of regular and  irregular fundamental systems. The convergence of this 
generalised power series was shown by Gantmacher (1959). 

The method described in this article to solve hyperradial equations for N-electron 
atoms ( N  3 1 )  is based on a more modern treatment of first-order linear systems with 
one weak singularity (Harris et a1 1969, Walter 1976). We show explicitly that our 
second-order system of equations to be solved is equivalent to a first-order system that 
belongs to that class of first-order systems treated by Walter (1976). In our particular 
case of Coulomb systems, however, we have got the impression that it is easier to 
attack directly the second-order equations. In contrast to earlier work of other authors 
we derive a two-term recursion formula which can immediately be solved in any order. 
Our method may be regarded as formal generalisation of the standard treatment for 
the hydrogen atom. The method allows us to construct regular and  irregular funda- 
mental systems. 

The paper is organised as follows. Section 2 derives the system of equations to be 
solved. Section 3 develops generalised power series solutions, and  § 4 constructs a 
regular fundamental system of solutions. A rigorous proof for the convergence of the 
generalised power series presented here will be given elsewhere (Klar 1984). 

2. Preliminaries 

We start from the Hamiltonian (in atomic units) of an atom with N electrons 

and look for stationary solutions JI, 

HJI = E$. (4) 

In configuration space representation equation (4) is a partial differential equation 
depending on 3 N  variables. This form is rather inconvenient for a mathematical 
investigation. Below we will convert equation (4) into a linear system of ordinary 
differential equations, since the theory for such systems is better established than for 
partial differential equations. 
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To this end  we introduce hypersperical coordinates ( r ,  W )  parametrising the electron 
position vectors 

r,  = r f ( w )  (5) 
with 

i.e. 

The quantity r is called the hyperradius and  the symbol w stands for a set of 3N-1  
angles. The choice of the parametrisation J ( w )  is not important here. A particular 
parametrisation was given for instance by Knirk (l974a). For two-electron systems 
(helium-like atoms) two alternative parametrisations are frequently used (see Fano 
1983). For helium S-states Fock (1958) used the parametrisation given in equation 
( 1 ) .  The Hamiltonian equation (3) reads in hyperspherical coordinates 

a -+-+-, H = _ _  1 r l - 3 N -  r3N-l  a i12 c ( W )  

2 a r  ar  2r2 r 

Here A2 is the sum of the squared generators for rotations in 3 N  dimensions. This 
operator is independent of r and acts only in the angles W .  The function C ( W ) ,  also 
independent of r, is equal to the total potential energy multiplied by r :  

Next we introduce antisymmetry-adapted 
These are harmonics on the sphere 

s ~ ~ ~ - ~  = { ( r , ,  . . . , r N ) l r =  1) 

(9) 

hyperspherical harmonics (Knirk 1974a). 

(10) 

and eigenfunctions of the total spin. A complete description of how to construct these 
antisymmetry-adapted harmonics was given by Knirk (1974a) and we refer the reader 
to that work. Here we need only that these harmonics are eigenfunctions of the operator 
A2 : 

( 1 1 )  11' Y h g  ( W ) = A ( A  f 3 N - 2 )  Y A ~ (  W ) 

with A = 0, 1 ,2 ,  . . . . Each eigenvalue A # 0 is, in general, degenerate: degenerate states 
within a A multiplet are labelled by the index g = g ( A ) .  

Since the antisymmetry-adapted harmonics form a complete set of orthonormal 
functions on S3,v-l X X ,  X being the spin space, we may expand the wavefunction 
according to 

where the spin variables are not explicitly written down. It is expected that this series 
converges in the mean (Erdilyi er a1 1953, p241f), i.e. 
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Substitution of equation (12) into equation (4) leads to a system of second-order 
ordinary differential equations: 

with the constant Hermitian matrix 

CAgA,g,= 5 dw YAg (w) 'C (W)YA, , , (W) .  

For two-electron systems, for instance, this matrix can be calculated analytically (Klar 
and Klar 1980, Pelikan and Klar 1983). 

In the following we use matrix notation and rewrite equation (14) in the form 

+( r )=O.  (16) 
a r  

Here $( r )  is the column vector with components $A,( r ) ,  A is the diagonal matrix with 
components 

AAgA,g' = A6AA,6gg ,  (17) 

and the elements of the matrix C are given in equation (15). Below the threshold for 
N free electrons ( E  < 0) we put 

K ' =  -2E. (18) 

Further it is convenient to use the variable 

Z = KT 

and to introduce the vector + ( z )  by 

I,!J(r) = exp(-z)+(z).  

Equation (16) then reads 

Z 

Let us briefly look at the behaviour of solutions of equation (21) at the origin z=O.  
Disregarding terms with l / z  we find constant vectors 

with 

I Ao for regular solutions 

for irregular solutions. 

In the special case of a diagonal matrix C solutions of equation (21) are confluent 
hypergeometric functions describing a hydrogen atom in d = 3 N dimensions. For a 
non-diagonal matrix C equation (20) has no trivial 'matrix generalisation' of a Kummer 
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series as a solution because the eigenvalues A are integers. This last circumstance 
leads to logarithmic terms in power series expansions. 

3. Generalised power series solutions 

Equation (21) is equivalent to a first-order system with one weak singularity at z = 0, 

W ( z ) ' = z - ' ( A. + zA , ) W ( z ) . (24) 

For such systems generalised power series solutions are known (Nyswander 1929, 
Gantmacher 1959, Walter 1976). Before we apply this technique to the second-order 
equation (21) we show the equivalence between equations (21) and (24). To this end 
we introduce the auxiliary vector 

1 
U( Z )  = +( z)'-- A + (  Z )  

Z 

and put 

With help of the identity 

Z z d z  Z 2  

we obtain an  equation having the structure of equation (24) where the constant matrices 
A. and A, are given by 

A [ 2A + (2, K )  C + (3N  - 1 ) l  -A - (3 N - 1)1 

In our example however it is more advantageous to solve directly the second-order 
equation for two reasons: 

( a )  One circumvents the calculation of the unnecessary auxiliary vectors U( z). 
( b )  Recursion formulae for the members of a power series are easier to solve for 

We start therefore solving equation (21) employing the ansatz 
second-order equations than for first-order equations. 

with z = e s  and a given by equation (23). 

in equation (25) must be constant (independent of s) and equal to 
From the behaviour at z = 0 (see equation (23)), we conclude that the vector +o(s) 

'po = lim z - ~ + ( z )  = +o. 
2-0 

Now we put the expansion (25) into equation (21) and  thus obtain the following set 
of equations for the vectors + k ( s ) :  
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for k = 0: 

( A 0 1  - A)?, = 0 (27 )  

for k z  I :  

(F~(s)”+  CY + 2k + 3 N - ~ ) v ~ ( s ) ’ + [ ( c Y  + k ) (  CY + k + 3 N - 2 )  - A ( A +  3 N - 2 ) ] ~ p k ( s )  

(28) 

In order to solve equation (28 )  it is convenient to rewrite this equation in factorised form 

( D +  CY + k + 3 N  - 2 + A)(D+ CY + k -A) (Pk(  S )  

(28’) 
= ( 2 D + ; C + 2 ~ ~ + 2 k + 3 N - 3  2 

with 

d 
D=--. 

d s  

Assume now that the RHS of equation (28’) is a polynomial vector of degree rn 3 0. 
Then there exists a unique solution f $ k ( S )  provided the two diagonal matrices 

MI = ((U + k + 3 N  - 2)U + A 

M2 = ((U + k)U - A  

( 3 0 0 )  

and 

(30b)  

are regular. It is easily seen that this solution is a polynomial vector of the same degree 
m. If however at  least one of the matrices M, ( i  = 1 , 2 )  is singular equation (28’) has 
more than one polynomial solution f $ k ( ~ )  of degree rn + 1. This has the following 
consequences. For regular solutions ( C Y  = A. 2 0) the matrix MI is regular because all 
diagonal elements are positive ( k a  I ,  N 2 1 ) .  The matrix M2 is singular in the block 
A = A ‘ =  A o +  k. Since parity conservation connects in the matrix C only even (odd) 
values with even (odd) values of A the matrix M2 becomes singular only for even 
values of k 2 2. Therefore regular solutions consist of vector polynomials &(s)  whose 
degree is 

deg ( P L ( S )  = [ k / 2 1 .  ( 3 1 )  

For irregular solutions (a = - A n  - 3 N + 2 )  the situation is less obvious because both 
matrices M,( i  = I ,  2 )  may become singular. MI becomes singular in the block A = A ‘ =  
A n -  k ;  this is possible for k = 2 , 4 ,  . . . , ( A o -  A,,,) where A,,,, depending on spin.and 
parity, is the smallest value of A appearing in the expansion (12 ) .  The matrix M2 
becomes singular in the block A = A ‘ =  - A o - 3 N + 2 +  k ;  this is possible for k z  
A n  + A,,, + 3 N - 2 which may be even or odd. The degree of irregular vector polynomials 
is therefore 

Note that A, - A m i n  is even and  not negative. 
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Let us briefly consider the hydrogen atom in d = 3 N dimensions. All A states are 
then decoupled because the matrix C is diagonal in this case. For regular solutions 
both matrices M, ( i  = 1,2)  are then regular, i.e. regular Coulomb wavefunctions contain 
no  logarithmic terms. For irregular solutions the matrix M2 becomes singular at one 
k value only, given by k, = 2Ao+ 3 N - 2. The expansion (25) for irregular Coulomb 
wavefunctions therefore contains linear terms in s = In z 

~ ( z ) = A ( z ) l n z + B ( z )  

where A(z )  and  B(z) have power series expansions with leading terms Z’O and  
, respectively. This is in agreement with Abramowitz and Stegun (1964) for 

N = 3 .  

Z-(A0+3 N - 2 )  

4. Regular solutions 

We now focus attention on regular solutions putting CY = A o  in equation (28‘). We 
define a sequence of operators 

3 3  
2 2  

Ok = ( D S  Ao-A+ k ) - ’ ( D +  Ao+3N - 2 + A +  k ) - ‘  C + A o + -  N --+ k)  (33) 

k 3 1. The inverse of a n  operator D +  a, a E R, which appears in equation (33) has to 
be defined such that 

y ( s )  = ( D +  a ) - ’ q ( s )  (34) 

Y ’ ( S )  + aY(s) = q ( s )  

is a polynomial solution of the equation 

provided q ( s )  is a polynomial. We obtain 

f ( - l ) n a - ( n + l )  D” for a # 0 L for a = 0 
( D + a ) - ’ =  n = O  (35) 

where D-’ means integration: 

D-’q(s) = y o +  5.1 ds’  q ( s ’ ) .  

In terms of the operator Ok equation (28’) may be written in the form 

( P k (  s) = 20k(Pk- I (s ) .  (37) 

Without loss of generality we standardise the solution vectors + k (  s)  putting 

instead of equation (36). This special choice is obviously permitted. Assume we solve 
a truncated system of dimension No. This system has No regular, linearly independent 
solution vectors + ( “ ) ( z ) ,  n = 1,. . . , No which may generated, for instance, from linear 
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combinations of standardised vectors 4!:)( z): 

N” 

4 ‘ ” Y Z )  = c 4 i I m Y Z ) C m n  
m = I  

provided the standardised vectors are linearly independent. Our standardisation (36’) 
corresponds therefore to a transformation given by (38). The standardised vector 
solutions are linearly independent for all values of z if they are linearly independent 
at one value of z. It is therefore sufficient to start with linearly independent solutions 
4o of equation (27). 

With the above notations the polynomial vectors q ( s )  are given by 

k 

(Pk(J)=2k n OlqO 
I = O  

where the product is ordered according to 

(39) 

with Oo=Q. 

This may be regarded as an operator-generalisation of a hypergeometrical function 
Substitution of equation (39) into equation (24) yields a solution in closed form. 

z ba z ’ ( b + I ) b ( a + l ) a + .  
l !  dc 2 ! ( d + l ) d ( c + l ) c  

zFz(a, b ;  c, d ;  z) = 1 +- -+- 

(see Slater 1966). We consider here non-singular operators represented by quadratic 
matrices U,  b, c, d and construct a sequences of operators: 

U fo rk=O 

for k z  1 .  
(42) Pk = { i d +  kll)-’(c+ kl)-’(b+ kll)(u+ kl)  

The definition 

Z Z 2  z3 

generalises equation (4  1 )  to operator-valued parameters. 
In terms of this definition the regular solutions are thus obtained in the form 

+ ( z )  = Z * O ~ @ ~ ( U ,  b ;  C, d ;  2z)q0 

with 

1 
a = ID + - C + ( A o  + i N  - $ ) U  

K 

(43) 

(44) 

(45) 
b=U 

c = Q D +  ( A o +  l)U - A 

d = UD+ ( A o +  3N - 1 ) U  + A .  
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We note that the derivative 

d d 
d s  d(ln z) 

D=-=- 

does not act on the argument 2z of the function 2F2,  see equation (43).  

The matrix C is then equal to 
Let us again consider the special case of hydrogen for the purpose of illustration. 

c = - 2 0 1  

2, being the nuclear charge. Since all A states decouple, equations (45) reduce to 

a +  --+A L O  +?hr-' 
0 2  2 

K 

b + l  

c+ 1 

d + 2 A 0 + 3 N -  1 

and the hypergeometric function equation (43) reduces to a confluent hypergeometric 
function. The regular solutions read therefore 

# J ( z ) = z ^ O , F , ( - V ;  2A"+3N-  I ;  ~ z ) ( P ,  (46) 

with 

Normalisability for bound states requires v to be an integer. This yields the discrete 
eigenvalues in d = 3 N dimensions 

Finally we compare our result with Fock's (1958) in the case of helium 'S.  Fock's 
angular functions Qnm(a, -9) are related to our vectors & ( s )  by 

see equations ( 2 ) ,  (20) and (25). The index g stands in this example for the orbital 
angular momentum I ,  = l2  = 1 of each electron. We expand now the exponential in 
equation (49) and compare the coefficient functions. The first few Fock functions are 
then given by 

Since Fock (1958) considers only wavefunctions being finite at r = 0 we put in equations 
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150) A. = 0. The normalised vector 40, see equation (27) ,  therefore has the components 

( P O , A l  = SAOS/O.  

It is now straightforward to employ the technique presented in this section. We find: 

I+!Joo( a, 6) = Yoo = constant 

= c Y A ! ( a ,  OI )A/,OO yOO- $00 
A /  

which is equal to 

Using the identities 

(5 -A2) - ' ( r i ) - '  = i r z  ( i = 1 , 2 )  

(5 - A2)-'lrl - r21-' = $Ir, - r21 

we rediscover in equations (50b, c) Fock's result up to a different normalisation, 
equation (53a ) .  
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